Wiring Diagram

Conventional schematic wiring diagram of detector circuit

Note: Polarity must be observed on detector as indicated on schematic wiring diagram. Earth terminal is provided to maintain earth screen continuity. It does not connect to this detector head.

Base Installation
Connect the zone wires to the appropriate terminal. Tighten with a correct sized screwdriver: a wrong screwdriver may damage the screw heads.
Make sure that the base contacts are clean and unobstructed.
Note, the base model No. for MKII Series is MKII-CB or MKII-CB/D

Detector Head Installation
If there is still minor construction work in progress, the head may be fitted, provided that the dust cover is still in place.
To fit the detector, mate the detector onto the base and rotate the detector in a clockwise direction until the detector loads into the base. Continue to twist clockwise to secure it.

Model
There are 5 models of Fyreye II Conventional Detector.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Model No.</th>
<th>Description</th>
<th>CPR No.</th>
<th>LPCB No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-200</td>
<td>MKII-OP</td>
<td>Conventional optical detector</td>
<td>0832-CPR-F0067</td>
<td>330n/01</td>
</tr>
<tr>
<td>80-202</td>
<td>MKII-HR</td>
<td>Conventional A2R heat detector</td>
<td>0832-CPR-F0071</td>
<td>330q/02</td>
</tr>
<tr>
<td>80-204</td>
<td>MKII-HF</td>
<td>Conventional A2S heat detector</td>
<td>0832-CPR-F0073</td>
<td>330q/01</td>
</tr>
<tr>
<td>80-206</td>
<td>MKII-OH</td>
<td>Conventional optical and heat detector</td>
<td>0832-CPR-F0069</td>
<td>330p/01</td>
</tr>
<tr>
<td>80-208</td>
<td>MKII-HF/CS90</td>
<td>Conventional CS heat detector</td>
<td>0832-CPR-F1922</td>
<td>330q/06</td>
</tr>
</tbody>
</table>

Monitor state
In monitor state, the two red LEDs on the top cover will blink every 5 seconds. See Fig-1.

Pre-alarm state
In pre-alarm state, LED pairs will blink a clockwise circle in every 5 seconds.

Fire alarm state
In fire alarm state, the two LEDs shown in Fig-1 will light. The other 3-pairs of LED will light for 0.5 seconds rotating clockwise.

False alarms
In case of false alarm, the LED pairs will blink alternately. Check if the air around the detector is clear. Fan the air around the smoke alarm if necessary, until the alarm turns off. If the false alarm occurs frequently or continuously, arrange to have the unit serviced.

Sensitivity Read
Take the Sensitivity Test Wand making the receive diode against the light-emitting diode (see Fig-2).
And push the button of the Sensitivity Test Wand, the sensitivity will be displayed on LCD of Wand for a few moments later.

Drift Compensation Limit
In the case of the smoke chamber reaching the end of it’s compensation limit, the detector will flash it’s LEDs continuously to signal that the detector should be replaced. This can be confirmed with the Sensitivity Test Wand.
SPECIFICATION

EN54-5/7 approval
Supply Voltage: 10.5~33V
Alarm Current: 35-45mA at 24 volts
Quiescent Current: 70uA Maximum
Smoke Sensitivity: 0.08 dB/m - 0.12 dB/m
Temperature class: A2R (for MKII-HR); A2S (for MKII-HF); CS (for MKII-HF/C90)
Humidity Range: 0% to 95% Relative Humidity, non condensing

Maintenance Information

Fyreye Mk II detectors are generally installed as part of a fire alarm system. Servicing of the system should be carried out in accordance with the requirements of the local code of practice for fire alarm installations, eg. BS 5839 Part 1, Fire Detection and Alarm Systems for Buildings: Code of Practice for System Design, Installation and Servicing. The frequency of inspection testing will be based on a risk assessment of the installation, but should be no more than 6 months between visits. Over a 12 month period every detector should be functionally tested, using suitable equipment to generate smoke or heat (EG the Solo range from No Climb Products) All Fyreye Mk II conventional smoke detectors have an IR transmitter that periodically transmits chamber data. This allows the detectors sensor status to be checked with a Sensitivity Test Wand.

Cleaning

Cleaning a smoke detector can prolong its working life. The detector can be cleaned with:-
- A hand held vacuum cleaner
- A clean air line or a “duster” aerosol
- A lint free cloth.
The effectiveness of cleaning will depend on the operating environment of the detector. Depending on timescales & financial considerations, detector cleaning may not be a practical option.

When to replace a detector

A detector should be considered as needing to be replaced if:-
The detector does not respond to a functional test
If the detector has had an unexplained activation*
If the detector has been in service for more than 10 years**

* In some cases it may be sensible to leave a detector until a second unexplained activation, but consider the extra service costs and perceived system integrity if this is done.
** Many detectors will continue to function adequately way beyond 10 years service. Balance the frequency of unwanted alarms, with the cost of replacing detectors when making this decision.

0832

Zeta Alarms Limited, 72-78 Morfa Road, Swansea SA1 2EN

0832-CPR-F0067/F0069/F0071/F0073/F1922

Heat detectors — Point detectors
Smoke detectors — Point detectors using scattered light, transmitted light or ionization
MKII Conventional detectors
MKII-OP, MKII-OH, MKII-HR, MKII-HF, MKII-HF/C90
Other Technical Data: See Doc: “MKII-xx LPCB, MKII-xx/C90 LPCB” held by the manufacturer